Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Environ Technol ; : 1-13, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36428222

RESUMO

Oil palm fibre is a type of solid waste generated from palm oil processing plant. At present, there is no proper utilization of this abundant waste. Ammoniacal nitrogen (NH3-N) has received a lot of attention as a water pollutant due to its toxicity, which has an impact on both the environment and human health. In aquaculture wastewater (AQW), NH3-N is present in low concentrations (<10 ppm), and removing low concentrations of NH3-N is tedious. Thus, this study focuses on the potential of oil palm fibre biochar (OPFB) for sustainable low concentration NH3-N recovery from AQW and the recovered spent adsorbent to be used as a bio-fertilizer. The Physico-chemical properties of OPFB show a positive correlation with NH3-N recovery. A significant reduction of value-added metals in OPFB has confirmed the recovery of NH3-N through the ion exchange process. The adsorption isotherms and kinetics of NH3-N recovery had good correlation coefficients under the Freundlich and pseudo-second-order kinetic model confirming a multilayer heterogeneous and chemical adsorption respectively. Thermodynamic parameters indicated that the recovery process via adsorption was exothermic and had a Physio-chemical mechanism. At optimum conditions, OPFB could recover up to 66% of NH3-N actual AQW. The properties of spent OPFB showed potential reutilization as a soil amendment agent or biofertilizer which could be easily degraded.

2.
Fish Physiol Biochem ; 46(4): 1621-1629, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32430644

RESUMO

Oxyeleotris marmorata is an ambush predator. It is known for slow growth rate and high market demand. Farming of O. marmorata still remains a challenge. In order to establish a proper feeding practice to stimulate growth, knowledge of its metabolic processes and cost should be examined. Therefore, this study was designed to investigate the diel osmorespiration rhythms of O. marmorata in response to feeding challenge by using an osmorespirometry assay. The results have shown that oxygen consumption rate of the fed fish was approximately 3 times higher than that of the unfed fish in early evening to support specific dynamic action. Digestion and ingestion processes were likely to be completed within 18-20 h in parallel with the ammonia excretion noticeable in early morning. Under resting metabolism, metabolic oxygen consumption was influenced by diel phase, but no effect was noted in ammonia excretion. As a nocturnal species, O. marmorata exhibited standard aerobic metabolic mode under dark phase followed by light phase, with high oxygen consumption rate found in either fed or unfed fish. It can be confirmed that both the diel phase and feeding have a significant interactive impact on oxygen consumption rate, whereas ammonia metabolism is impacted by feeding state. High metabolic rate of O. marmorata supports the nocturnal foraging activity in this fish. This finding suggested that feeding of O. marmorata should be performed during nighttime and water renewal should be conducted during daytime.


Assuntos
Peixes/fisiologia , Aclimatação/fisiologia , Amônia/metabolismo , Animais , Ritmo Circadiano/fisiologia , Digestão/fisiologia , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Pesqueiros , Peixes/metabolismo , Água Doce , Osmorregulação/fisiologia , Consumo de Oxigênio/fisiologia , Respiração
3.
Soft Matter ; 12(5): 1477-86, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26648408

RESUMO

The interactions of two oil droplets grown in the presence of swollen, lightly cross-linked cationic poly(tert-butylamino)ethyl methacrylate (PTBAEMA) microgels was monitored using a high-speed video camera. Three oils (n-dodecane, isopropyl myristate and sunflower oil) were investigated, each in the absence and presence of an oil-soluble cross-linker [tolylene 2,4-diisocyanate-terminated poly(propylene glycol), PPG-TDI]. Adsorption of the swollen microgel particles was confirmed by interfacial tension, interfacial elasticity and dilational viscosity measurements on single pendant oil droplets, and assessment of the oscillatory dynamics for coalescing droplet pairs. Like the analogous bulk emulsions, particle adsorption alone did not prevent coalescence of pairs of giant Pickering emulsion droplets. However, prior addition of surface-active PPG-TDI cross-linker to the oil phase results in the formation of highly stable microgel colloidosomes via reaction with the secondary amine groups on the PTBAEMA chains. Colloidosome stability depended on the age of the oil-water interface. This reflects a balance between the adsorption kinetics of the PPG-TDI cross-linker and the microgel particles, each of which must be present at the interface to form a stable colloidosome. Colloidosome formation was virtually instantaneous in n-dodecane, but took up to 120 s in the case of isopropyl myristate. The impact of an acid-induced latex-to-microgel transition on the interaction of giant colloidosomes (originally prepared at pH 10 using isopropyl myristate) was also studied. This acid challenge did not result in coalescence, which is consistent with a closely-related study (A. J. Morse et al., Langmuir, 2014, 30(42), 12509-12519). No evidence was observed for inter-colloidosome cross-linking, which was attributed to retention of an aqueous film between the adjacent pair of colloidosomes.

4.
Soft Matter ; 10(31): 5669-81, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24919402

RESUMO

The coalescence of two oil droplets grown at pH 10 in the presence of lightly cross-linked 260 nm diameter charge-stabilised poly(tert-butylamino)ethyl methacrylate (PTBAEMA) latexes was monitored using a high-speed video camera. Three model oils (n-dodecane, isopropyl myristate and sunflower oil) were investigated, each in the absence and presence of an oil-soluble cross-linker [tolylene 2,4-diisocyanate-terminated poly(propylene glycol), PPG-TDI]. In the absence of PPG-TDI, rapid coalescence was observed for giant PTBAEMA-stabilised Pickering oil droplets, which exhibited faster coalescence times compared to bare oil droplets. However, an increase in the damping coefficients for coalescing Pickering droplets (compared to those of bare oil droplets) indicated PTBAEMA latex particle adsorption. Addition of PPG-TDI cross-linker to oil droplets in the absence of latex particles led to a reduction in the interfacial tension confirming its surface-active nature. The oil-soluble PPG-TDI reacts with the secondary amine groups on the PTBAEMA latex, producing giant colloidosomes that remain stable to coalescence when brought into contact. This stability to coalescence was not observed for bare oil droplets in the presence of PPG-TDI, confirming that the cross-linked latex particles at the interface provide the additional stability. Finally, interactions between asymmetric n-dodecane droplets were examined. Adding oil-soluble cross-linker to only one droplet resulted in "arrested coalescence" behaviour in the presence of PTBAEMA latex particles. In this context, the droplet ageing time was found to be critical and is attributed to the relatively slow particle adsorption kinetics. Ageing times of less than 60 s led to catastrophic droplet coalescence, whereas ageing times longer than 60 s indicated cross-linker diffusion from one droplet to the other, which produced inter-cross-linked colloidosomes. Arrested coalescence was only observed for ageing times of approximately 60 s.

5.
J Phys Chem B ; 117(28): 8579-88, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23796213

RESUMO

The interactions between two individual particle-stabilized bubbles were investigated, in the absence of surfactant, using a combination of coalescence rig and high-speed video camera. This combination allows the visualization of bubble coalescence dynamics which provide information on bubble stability. Experimental data suggested that bubble stability is enhanced by both the adsorption of particles at the interface as indicated by the long induction time and the increase in damping coefficient at high surface coverage. The interaction between an armored bubble and a bare bubble (asymmetric interaction) can be destabilized through the addition of a small amount of salt, which suggested that electrostatic interactions play a significant role in bubble stability. Interestingly, the DLVO theory cannot be used to describe the bubble stability in the case of a symmetric interaction as coalescence was inhibited at 0.1 M KCl in both the absence and presence of particles at the interfaces. Furthermore, bubbles can also be destabilized by increasing the particle hydrophobicity. This behavior is due to thinner liquid films between bubbles and an increase in film drainage rate. The fraction of particles detached from the bubble surface after film rupture was found to be very similar within the range of solution ionic strength, surface coverage, and particle hydrophobicity studied. This lack of dependence implies that the kinetic energy generated by the coalescing bubbles is larger than the attachment energy of the particles and dominates the detachment process. This study illuminates the stability behavior of individual particle-stabilized bubbles and has potential impact on processes which involve their interaction.

6.
Langmuir ; 27(6): 2536-44, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21299193

RESUMO

The nature of the interface of drops or bubbles and the dynamic interactions between them often mediate or control macroscopic behavior in the formulation and processing of emulsions and foams in solvent extraction, froth flotation, food, personal care products, and microfluidics as well as in many biological processes. Characterization of these interfaces is often complicated due to the small size of the drops and bubbles that may range from the micrometer scale to hundreds of micrometers. We report the direct measurement of the surface or interfacial tension of drops or bubbles in aqueous solutions as a function of the concentration and type of surfactant, using atomic force microscopy (AFM) and a recently developed nanoneedle AFM cantilever. We also demonstrate the viability of imaging drops or bubbles of this size in both tapping and contact imaging modes through a systematic study of parameters, including cantilever spring constant, tip geometry, imaging force, and feedback settings as well as the AFM manufacturer. The imaging study demonstrates the viability of using AFM to visualize complex structures at the oil-water or air-water interface as well as how concentric ring artifacts observed in the literature are the result of earlier AFM instrument limitations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...